Логические основы цифровых схем

10 Апр 2018

В некоторых случаях функции электической схемы можно представить с по­мо­щью логических операторов Булевой алгебры. Тогда говорят, что схе­ма циф­ро­вая, т.е. подчиняется законам, хорошо иллюстрированным ло­ги­че­ски­ми операциями — инверсии, логического сложения, конъ­юнк­ции, ис­клю­ча­ю­ще­го «ИЛИ» и т.п. Первым исследовал эти законы Клод Шеннон в 1938 г. на примере электрических цепей с ключами. Впрочем, каждому из нас по силам придумать пример, иллюстрирующий фи­зи­че­ские явления, под­чи­ня­ю­щи­е­ся законам формальной логики.

Одной из самых распространенных аналогий является управление водопроводными кранами. Рассмотрим не­ко­то­рые примеры из этой области, принимая во внимание, что по электрическим схемам тоже «течет ток».

Вентильные схемы работы логических элементов
Рис 1. Вентильные схемы работы логических элементов

Во времена первых компьютеров в ходу была диодная логика, по принципу действия в чем-то схожая с работой водопроводных вентилей. Сегодня логические схемы реализуются интегральными микросхемами с высокой плотностью компоновки полупроводниковых элементов, но иногда полезно вспомнить, как формируется один логический элемент с использованием нескольких диодов.

Подключение по схеме «ИЛИ»

Практическую пользу схемы «ИЛИ» трудно переоценить: существует множество схем питания, использующих ло­ги­ку двух входов с диодной коммутацией. Если на одном из входов или на обеих сразу высокий логический уро­вень, ди­од (ди­о­ды) проводит ток, обеспечивая на выходе Y логическую единицу.

Логический элемент «ИЛИ», выполненный на двух диодах и подтягивающем резисторе
Рис 2. Логический элемент «ИЛИ», выполненный на двух диодах и подтягивающем резисторе

В логических элементах, основанных на диодной логике возможны состояния, при которых все диоды закрыты: для приведенной схемы «ИЛИ» это состояние, когда на входах A и B присутствует низкий уровень либо они не под­ключены. В этом случае, элемент «ИЛИ» должен выдавать на выход уровень логического нуля, что и обес­пе­чи­ва­ет­ся резистором, соединяющим выход с общим проводом.

Подключение по схеме «И»

Диодный элемент «И» состоит из двух входов и выхода (Y). На вход диодной схемы может подаваться логическая единица (ей соответствует высокий уровень сигнала) или логический ноль — коммутация на общий провод («зем­ля»). Замкнутые ключи схемы формируют ноль на выходе. Единицу можно получить только в случае, если не на­жат ни один из них: высокий логический уровень на обоих входах дает высокий логический уровень на выходе.

Логический элемент «И», выполненный на двух диодах и подтягивающем резисторе
Рис 3. Логический элемент «И», выполненный на двух диодах и подтягивающем резисторе

Для приведенной схемы диодного элемента «И» закрытое состояние обоих диодов возможно при наличии вы­со­ко­го уровня на обоих входах. Аналогичный результат, отсутствие тока через диоды, будет иметь место когда клю­чи не замкнуты

Если подтягивающие резисторы не устанавливать

Если в схеме логического «ИЛИ» все входные диоды отключены (Рис 2.а) либо в схеме логического «И» все вход­ные диоды отключены (Рис 3.а), на выходе будет так называемое Z-состояние — состояние высокого со­про­тив­ле­ния, несущее неопределенность. Его восприятие зависит от схемотехники входных цепей, под­клю­чен­ных к вы­хо­ду нашего логического элемента. Не исключено, что схема сохранит работоспособность и без подтягивающего ре­зис­то­ра, если такой резистор (в яв­ном виде или в виде паразитных цепей утечки) имеется во входной цепи сле­ду­ю­ще­го каскада. Рассчитывать на та­кой «по­да­рок» не следует, поэтому неопределенность устраняется под­клю­че­ни­ем терминирующего резистора.

Выбор номинала для подтягивающего резистора является компромиссом: при низком сопротивлении сигнал бу­дет «просаживаться», при высоком — внешние факторы, такие как паразитные токи утечек, окажут на работу эле­мен­та существенное влияние, и требуемый логический уровень не будет гарантирован. Чтобы избежать не­о­пре­де­лен­нос­ти, формированием логического нуля следует считать соединение входа с общим проводом, ло­ги­че­ской единицы — соединение с плюсом источника питания, а неподключенного состояния следует избегать. Для этого и нужны подтягивающие резисторы. Как видим, приведенные выше схемы на основе кнопок нарушают правила тер­ми­на­ции, опираясь на частные случаи и рассчитывая на предсказуемую реакцию диодной логики в не­под­клю­чен­ном состоянии (при разомкнутой кнопке).

Вентили на полевых транзисторах

Для построения сложных схем требуются элементы, способные обеспечить развязку между управляющей и ве­до­мой цепями. В качестве таких элементов используются транзисторы. Наиболее продуктивной для логических схем оказалась CMOS-технологиях их изготовления. В качестве основы для этих транзисторов используется ком­пле­мен­тар­ная структура металл-оксид-полупроводник, что и определило название всего семейства.

N-канальный транзистор закрыт, когда потенциал на затворе равен истоковому
Рис 4N-канальный транзистор закрыт, когда потенциал на затворе равен истоковому

В работе N-канального СMOS-транзистора используется 5-вольтовая логика: ключ на его основе окажется за­кры­тым, если на затвор прибора подать напряжение низкого уровня и открывается при подаче +5V. Напряжение на затворе управляет проводимостью между стоком и истоком «полевика», и этот факт раз­ра­бот­чи­ком схемы может использоваться для реализации заданных возможностей.

N-канальный транзистор откроется, если на затвор подать положительный потенциал
Рис 5N-канальный транзистор откроется, если на затвор подать положительный потенциал

Стоит только изменить уровень напряжения на затворе транзистора, и он откроется, переключаясь в проводимое состояние. Если нулевой уровень запирает логическую схему, то перевести ее в противоположное (открытое) со­сто­я­ние можно только подав относительно истока положительное напряжение. Его уровень должен превышать оп­ре­де­лен­ный барьер — threshold voltage. Конструкция транзисторов СMOS-логики такова, что порог сра­ба­ты­ва­ния, как правило, выше 1,5 вольта.

Примечание. Если быть предельно точным, то для надежной работы схемы переключения требуется, чтобы напряжение на затворе превышало коммутируемое напряжение. Именно поэтому в импульсных регуляторах, где ШИМ-контроллер питается от +12V и коммутируемое напряжение равно +12V применяется Boost-цепочка, формирующая напряжение в пределах 2024V для питания затворов.

 

Теги: