Тактирование цифровых схем: осцилляция, генерация, частота

13 Апр 2018

Для функционирования цифровых схем характерен строгий порядок че­ре­дования логических состояний. Он называется тактированием и ис­чис­ляется в (кило-, мега-, гига-) герцах. Так, например, системное вре­мя тактируется частотой в 32 КГц, а если точнее — 32768 Гц. Почему? От­вет три­ви­аль­ный: в основе работы системных часов лежит использование пят­над­ца­ти­раз­ряд­но­го двоичного счетчика (215). Если его ин­кре­мен­ти­ро­вать — увеличивать значение на единицу — с частотой 32768 Гц, он будет переполняться еже­се­кун­д­но, что позволит ре­а­ли­зо­вать схему системных часов на типовой логике без особых конструктивных слож­но­с­тей.


Рис 1. Блок-схема кварцевых часов

Тактирование процессора

Еще один пример хрестоматийной частоты, используемой в персональном компьютере — 4,77 МГц. Про­из­во­ди­тель­ность первых процессоров x86 архитектуры ограничивается именно этим параметром. Его значение фор­ми­ру­ет­ся из частоты кварцевого резонатора 14.31818 МГц, которая делится на 3 тактовым генератором процессора и на 4 для получения сигнала цветности 3.58 МГц, необходимого для цветного телевидения. Другими словами, не­слож­ны­ми операциями мы получаем из опорной частоты не только тактирование процессора, но 4/3 под­не­су­щей частоты сиг­на­ла NTSC для формирования изображения на экране дисплея. Хотя даже во времена, когда ком­пью­тер­ные дис­п­леи использовали телевизионные частоты, большинство реализаций видео адаптеров снаб­жа­лись соб­ствен­ны­ми квар­це­вы­ми резонаторами.


Рис 2. Кварцевые резонаторы ("часовой" и опорной частоты) на современной платформе ASUS M2N-MX

При тактовой частоте 4.77 МГц длительность цикла обмена по системной шине 8088 составляет четыре такта по 210 нсек или 840 нсек. Медленные периферийные устройства требуют увеличения длительности цикла обмена, как правило до пяти тактов по 210 нсек, что составляет 1.05 мксек.

Кварцевый резонатор — основа тактирования

Для изготовления кварцевых резонаторов используют природный или искусственно выращенный монокристалл кварца. В силу того, что он обладает анизотропными свойствами, параметры резонатора зависят от плоскости приложения электрического поля относительно ориентации его кристаллографических осей. Благодаря ис­поль­зо­ва­нию различных направлений среза удается добиться нужных, часто весьма противоречивых и мно­го­чис­лен­ных тре­бо­ва­ний, предъявляемых к характеристика кварцевых резонаторов.


Рис 3. Виды колебаний кварцевых элементов: а) сжание/растяжение, б) изгиб, в) кручение по вертикали,
г) кручение по горизонтали, д )сдвиг по контуру, е) сдвиг по толщине

Кристалл кварца демонстрирует как прямой, так и обратный пьезоэлектрический эффект. Прямой пьезоэффект характеризуется тем, что под воздействием механической силы на поверхностях кристалла появляется элек­три­че­ский заряд, пропорциональный приложенной силе. Обратный пьезоэффект сводится к тому, что при­ло­жен­ное к поверхности электрическое напряжение приводит к изменению формы и размера пластины. Возможные виды ме­ха­ни­че­ских колебаний кварцевых элементов представлены на Рис. 3. Чаще всего используют колебания сжатия — растяжения, изгиба, кручения, сдвига по контуру и по толщине. Эти колебания возможны как на основной ре­зо­нан­с­ной частоте кварца, определяемой его геометрическими размерами и видом среза, так и на различных гар­мо­ни­ках, крат­ных этой частоте.

Прямой и обратный пьезоэлектрический эффект используются в кварцевых резонаторах, применяемых в качестве эта­лона частоты. Кварцевый резонатор представляет собой очень тонкую кварцевую пластину, кон­так­ти­ру­ю­щую с дву­мя ме­тал­ли­зи­ро­ван­ными поверхностями. Физический размер и толщина фрагмента квар­це­во­го кри­с­тал­ла влияет на параметр его колебаний, который называется «характеристической частотой» квар­ца. Дру­ги­ми сло­ва­ми, его размер и форма определяют основную частоту колебаний — характеристическая частота об­рат­но про­пор­ци­о­наль­на толщине кристалла.


Рис 4. Эквивалентная схема кварцевого резонатора

Механические колебания кристалла могут быть представлены электрической схемой, эквивалентной по­сле­до­ва­тель­но­му ко­ле­ба­тель­ному контуру, состоящему из низкоомного резистора (R), катушки индуктивности (L) и конденсатора малой емкости (Cs). Конденсатор Cp моделирует паразитную емкость кварцедержателя и монтажа.

«Если быть предельно точным»

Необходимым, но недостаточным условием работоспособности цифровых схем является наличие питающих на­пря­же­ний и тактовых электрических импульсов, задающих порядок выполнения компьютером элементарных опе­ра­ций. Узлы и контроллеры персональной платформы взаимодействуют между собой в рамках, строго заданных тактированием.


Рис 5. Кварцевый резонатор 14.31818 МГц на современной системной плате формирует опорную частоту для генератора тактовых импульсов

Этот процесс делегирован тактовому генератору — специальной микросхеме, которая опираясь на стабильные па­ра­мет­ры кварцевого резонатора формирует сетку частот, обеспечивающих функционирование центрального про­цес­со­ра, оперативной памяти и контроллеров ввода/вывода. Ее часто называют синтезатором частот или ге­не­ра­то­ром так­то­вых импульсов.


Рис 6. Генерируя стабильные импульсы, кварцевый резонатор вырабатывает опорную частоту, из которой тактовый генератор формирует сетку частот, обеспечивающих функционирование компьютера

Так, например, делением частоты 14.31818 МГц на 12, вырабатывается сигнал тактирования системного таймера, равный 1.193 МГц, который, в свою очередь, делит эту частоту на 65536 = 216. В результате вырабатывается час­то­та для генерации временны́х меток DOS Ticks (в переводной литературе — тики системного таймера). Эта частота, равная 18.2 Гц, используется для периодических прерываний от системного таймера.

Теги: